What is Data Science?

文章正文
发布时间:2024-09-05 06:51

Data scientists rely on popular programming languages to conduct exploratory data analysis and statistical regression. These open source tools support pre-built statistical modeling, machine learning, and graphics capabilities. These languages include the following (read more at "Python vs. R: What's the Difference?"):

R Studio: An open source programming language and environment for developing statistical computing and graphics.

Python: It is a dynamic and flexible programming language. The Python includes numerous libraries, such as NumPy, Pandas, Matplotlib, for analyzing data quickly.

To facilitate sharing code and other information, data scientists may use GitHub and Jupyter notebooks.

Some data scientists may prefer a user interface, and two common enterprise tools for statistical analysis include:

Data scientists also gain proficiency in using big data processing platforms, such as Apache Spark, the open source framework Apache Hadoop, and NoSQL databases. They are also skilled with a wide range of data visualization tools, including simple graphics tools included with business presentation and spreadsheet applications (like Microsoft Excel), built-for-purpose commercial visualization tools like Tableau and IBM Cognos, and open source tools like D3.js (a JavaScript library for creating interactive data visualizations) and RAW Graphs. For building machine learning models, data scientists frequently turn to several frameworks like PyTorch, TensorFlow, MXNet, and Spark MLib.

Given the steep learning curve in data science, many companies are seeking to accelerate their return on investment for AI projects; they often struggle to hire the talent needed to realize data science project’s full potential. To address this gap, they are turning to multipersona data science and machine learning (DSML) platforms, giving rise to the role of “citizen data scientist.”

Multipersona DSML platforms use automation, self-service portals, and low-code/no-code user interfaces so that people with little or no background in digital technology or expert data science can create business value using data science and machine learning. These platforms also support expert data scientists by also offering a more technical interface. Using a multipersona DSML platform encourages collaboration across the enterprise.

首页
评论
分享
Top